机器学习 A-Z (Machine Learning A-Z in Chinese)

全面建立机器学习的知识架构,并且在Python和R里构建不同的机器学习模型。课程内容包括所有的代码模板。

机器学习 A-Z (Machine Learning A-Z in Chinese)
机器学习 A-Z (Machine Learning A-Z in Chinese)

机器学习 A-Z (Machine Learning A-Z in Chinese) udemy course free download

全面建立机器学习的知识架构,并且在Python和R里构建不同的机器学习模型。课程内容包括所有的代码模板。

想了解机器学习?这门课程为您订做!

这门课程是英文课程Machine Learning A-Z的翻译和再创造。原版英文课程是Udemy上最畅销的机器学习课程。您在这门课里,会用深入浅出的方法学会复杂的模型,算法,还有基础的编程语句。

我们会手把手地教会您机器学习。每一节课都会让您获得新的知识,完备机器学习的知识架构,在享受机器学习的同时对这个领域有更深的理解。

这门课程十分有趣,包含了机器学习的方方面面。课程结构如下:

  • 第一部分 - 数据预处理
  • 第二部分 - 回归:简单线性回归,多元线性回归,多项式回归
  • 第三部分 - 分类:逻辑回归,支持向量机(SVM),核函数与支持向量机(Kernel SVM),朴素贝叶斯,决策树分类,随机森林分类
  • 第四部分 - 聚类:K-平均聚类分析
  • 第五部分 - 关联规则学习:先验算法
  • 第六部分 (待更新) - 强化学习:置信区间上界算法(UCB),Thompson抽样算法
  • 第七部分 (待更新) - 自然语言处理 :自然语言处理算法
  • 第八部分 (待更新) - 深度学习:人工神经网络,卷积神经网络
  • 第九部分 (待更新) - 降维(Dimensionality Reduction):主成分分析 (PCA),核函数主成分分析(Kernel PCA)
  • 第十部分 (待更新) - 模型选择:模型选择,极端梯度上升

对于每个模型,除了学会理论基础之外,您还会学习如何将这些模型运用到各种实际生活的案例里,并且课程也包括Python和R的代码模板,您可以下载并且直接将代码运用到您自己的项目里。


Interested in the field of Machine Learning? Then this course is for you!

This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theory, algorithms and coding libraries in a simple way.

We will walk you step-by-step into the World of Machine Learning. With every tutorial you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.

This course is fun and exciting, but at the same time we dive deep into Machine Learning. It is structured the following way:

  • Part 1 - Data Preprocessing
  • Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression
  • Part 3 - Classification: Logistic Regression, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
  • Part 4 - Clustering: K-Means
  • Part 5 - Association Rule Learning: Apriori
  • Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
  • Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
  • Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
  • Part 9 - Dimensionality Reduction: PCA, Kernel PCA
  • Part 10 - Model Selection & Boosting: k-fold Cross Validation, Grid Search.

Moreover, the course is packed with practical exercises which are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.

And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.