Python for Data Science - NumPy, Pandas & Scikit-Learn
Master Python for Data Science - Unlock the Key Tools for Efficient Data Analysis and Modeling!

Python for Data Science - NumPy, Pandas & Scikit-Learn udemy course free download
Master Python for Data Science - Unlock the Key Tools for Efficient Data Analysis and Modeling!
This course is a comprehensive guide to Python's most powerful data science libraries, designed to provide you with the skills necessary to tackle complex data analysis projects.
This course is tailored for beginners who want to delve into the world of data science, as well as experienced programmers who wish to diversify their skill set. You will learn to manipulate, analyze, and visualize data using Python, a leading programming language for data science.
The course begins with an exploration of NumPy, the fundamental package for numerical computing in Python. You'll gain a strong understanding of arrays and array-oriented computing which is crucial for performance-intensive data analysis.
The focus then shifts to Pandas, a library designed for data manipulation and analysis. You'll learn to work with Series and DataFrames, handle missing data, and perform operations like merge, concatenate, and group by.
The final section of the course is dedicated to Scikit-Learn, a library providing efficient tools for machine learning and statistical modeling. Here you'll delve into data preprocessing, model selection, and evaluation, as well as a broad range of algorithms for classification, regression, clustering, and dimensionality reduction.
By the end of this course, you will have a firm grasp of how to use Python's primary data science libraries to conduct sophisticated data analysis, equipping you with the knowledge to undertake your own data-driven projects.
Python for Data Science: Empowering Insight Through Code
Python is the go-to language for data science, offering powerful libraries like NumPy for numerical computing, Pandas for data manipulation, and Scikit-learn for machine learning. Together, these tools enable efficient data analysis, transformation, and model building—making Python an essential skill for turning raw data into actionable insights.
Some topics you will find in the NumPy exercises:
working with numpy arrays
generating numpy arrays
generating numpy arrays with random values
iterating through arrays
dealing with missing values
working with matrices
reading/writing files
joining arrays
reshaping arrays
computing basic array statistics
sorting arrays
filtering arrays
image as an array
linear algebra
matrix multiplication
determinant of the matrix
eigenvalues and eignevectors
inverse matrix
shuffling arrays
working with polynomials
working with dates
working with strings in array
solving systems of equations
Some topics you will find in the Pandas exercises:
working with Series
working with DatetimeIndex
working with DataFrames
reading/writing files
working with different data types in DataFrames
working with indexes
working with missing values
filtering data
sorting data
grouping data
mapping columns
computing correlation
concatenating DataFrames
calculating cumulative statistics
working with duplicate values
preparing data to machine learning models
dummy encoding
working with csv and json filles
merging DataFrames
pivot tables
Topics you will find in the Scikit-Learn exercises:
preparing data to machine learning models
working with missing values, SimpleImputer class
classification, regression, clustering
discretization
feature extraction
PolynomialFeatures class
LabelEncoder class
OneHotEncoder class
StandardScaler class
dummy encoding
splitting data into train and test set
LogisticRegression class
confusion matrix
classification report
LinearRegression class
MAE - Mean Absolute Error
MSE - Mean Squared Error
sigmoid() function
entorpy
accuracy score
DecisionTreeClassifier class
GridSearchCV class
RandomForestClassifier class
CountVectorizer class
TfidfVectorizer class
KMeans class
AgglomerativeClustering class
HierarchicalClustering class
DBSCAN class
dimensionality reduction, PCA analysis
Association Rules
LocalOutlierFactor class
IsolationForest class
KNeighborsClassifier class
MultinomialNB class
GradientBoostingRegressor class