Master Deep Learning and Generative AI with PyTorch in Hindi

Build and Deploy AI Models: Learn Neural Networks, Computer Vision, NLP, and More with PyTorch

Master Deep Learning and Generative AI with PyTorch in Hindi
Master Deep Learning and Generative AI with PyTorch in Hindi

Master Deep Learning and Generative AI with PyTorch in Hindi udemy course free download

Build and Deploy AI Models: Learn Neural Networks, Computer Vision, NLP, and More with PyTorch

you will learn all these Topics and lot more

1. Core Concepts

1. Perceptron

2. MLP and its Notation

3. Forward Propagation

4. Backpropagation

5. Chain Rule of Derivative in Backpropagation

6. Vanishing Gradient Problem

7. Exploding Gradient



Activation Functions


List of Activation Functions

1. Linear Function

2. Binary Step Function

3. Sigmoid Function (Logistic Function)

4. Tanh (Hyperbolic Tangent Function)

5. ReLU (Rectified Linear Unit)

6. Leaky ReLU

7. Parametric ReLU (PReLU)

8. Exponential Linear Unit (ELU)

9. Scaled Exponential Linear Unit (SELU)

10. Softmax

11. Swish.

12. SoftPlus

13. Mish

14. Maxout

15. GELU (Gaussian Error Linear Unit)


16. SiLU (Sigmoid Linear Unit)

17. Gated Linear Unit (GLU)

18. SwiGLU

19. Mish Activation Function


Derivative of Activation Functions


Properties of Activation Functions

1. Saturating vs Non-Saturating

2. Smooth vs Non-Smooth

3. Generalized vs Specialized

4. Underflow and Overflow

5. Undefined and Defined

6. Computationally Expensive vs Inexpensive.

7. 0-Centered and Non-0-Centered

8. Differentiable vs Non-Differentiable

9. Bounded and Unbounded

10. Monotonicity

11. Linear Vs Non Linear



Ideal Activation Function Characteristics

1. Non-Linearity

2. Differentiability

3. Computational Efficiency

4. Avoids Saturation

5. Non-Sparse (Dense) Gradients

6. Centered Output (0-Centered)

7. Prevents Exploding Gradients

8. Monotonicity (Optional)

9. Sparse Activations (Optional)

10. Resilience to Outliers

11. Noise Robustness

12. Stable Training Dynamics

13. Minimal Parameter Dependency

14. Compatibility with Modern Techniques

15. Efficient in Hardware

16. The Function Must Be Continuous and Infinite in Domain

17. Vanishing Gradient Problem

18. Dynamic Range Adaptation

19. Scalability to Deeper Networks

20. Biological Plausibility (Optional)

21. Simplicity in Implementation


22. Gradient Smoothness

23. Compatibility with Unsupervised Objectives



Loss Functions


1. Mean Squared Error (MSE)

2. Mean Absolute Error (MAE)

3. Root Mean Squared Error (RMSE)

4. Root Mean Squared Log Error (RMSLE)

5. Huber Loss

6. Hinge Loss

7. Binary Cross-Entropy (BCE)

8. Categorical Cross-Entropy

9. Focal Loss

10. Contrastive Loss

11. KL Divergence (Kullback-Leibler Divergence)

12. Triplet Loss

13. Smooth L1 Loss:

14. Dice Loss:


Optimizers


1. Gradient Descent

2. Stochastic Gradient Descent (SGD)

3. Mini-Batch Gradient Descent

4. Exponentially Weighted Moving Average (EWMA)

5. Gradient Descent with Momentum

6. Nesterov Accelerated Gradient

7. AdaGrad (Adaptive Gradient)

8. RMSProp (Root Mean Squared Propagation)

9. AdaDelta

10. Adam (Adaptive Moment Estimation)

11. Nadam (Nesterov-accelerated Adaptive Moment Estimation)

12. LAMB (Layer-wise Adaptive Moments):

13. SGDW/AdamW


Improving Performance of Neural Networks


· Effect of Batch Size on Training

· Memoization


Weight Initialization

1. Zero Initialization


2. Non-Zero Constant Value Initialization

3. Random Initialization (with small values, large values)

4. Xavier (Glorot) Initialization

5. He Initialization

6. LeCun Initialization

7. Uniform Initialization

8. Normal (Gaussian) Initialization

9. Bilinear Initialization

10. Orthogonal Initialization




Regularization

1. L1 Regularization (Lasso)

2. L2 Regularization (Ridge) (weight decay)

3. Elastic Net Regularization

4. Dropout

5. Early Stopping

6. Data Augmentation

7. Batch Normalization

8. Residual Connections

9. Label Smoothing

10. Parameter Sharing

11. Weight Constraint

12. Adversarial Training


Normalization

1. Normalizing Inputs

2. Batch Normalization (BatchNorm)

3. Layer Normalization (LayerNorm)

4. Instance Normalization (InstanceNorm)

5. Group Normalization (GroupNorm)

6. RMSNorm

7. Filter Response Normalization

8. Weight Normalization


Other Techniques


Gradient Clipping and Gradient Checking Hyperparameter Tuning

Learning Rate Scheduling


1. Step Decay

2. Exponential Decay

3. Cosine Annealing

4. Cyclical learning rate

5. OneCycleLR

6. Warmup



Recurrent Neural Networks (RNNs)

1. RNN

2. LSTM

3. GRU

4. Deep Stacked RNN, Bidirectional


Sequence-to-Sequence Models

1. Encoder-Decoder Architecture

2. Attention Mechanism


Natural Language Processing (NLP)

· Tokenization: Sentence tokenization, word tokenization, and subword tokenization (BPE, WordPiece).

Text Preprocessing: Lowercasing, stemming, lemmatization, stopword removal etc...

Text Vectorization:


1. One-Hot Encoding

2. Bag of Words (BoW)

3. TF-IDF

4. Word Embeddings (Word2Vec, GloVe, FastText)

5. Contextual Embeddings (ELMo, BERT, GPT, etc.) Complete NLP Basics

Transformers

1. Vanilla Transformer


2. Vision Transformer

3. Swin Transformer

and lot more